Меню

Схема ардуино уно своими руками схема

Как сделать контроллер Arduino своими руками

В этой статье мы расскажем, как своими руками собрать Arduino на обычной макетной плате.

Для этого нам понадобится микроконтроллер ATmega328 — такой же, как и в оригинальной Arduino Uno.

Распиновка ATmega328

В начале работы с любым микроконтроллером необходимо изучить его распиновку. После этого уже можно приступать к сборке необходимой обвязки. Ниже представлена распиновка микроконтроллера ATmega328.

Сборка Arduino на макетной плате

Необходимые компоненты

Для работы с микроконтроллером понадобятся:

Схема сборки

Соберите на макетной плате компоненты по следующей схеме:

Эксперимент «маячок» из Матрёшки

Добавьте к схеме светодиод на 13 пине. Для этого повторите первый эксперимент из набора Матрёшка Z — маячок.

Обратите внимание, 13 пин Arduino, это не 13 ножка микроконтроллера. Чтобы найти нужный пин, воспользуйтесь распиновкой ATmega328

Схема эксперимента собрана. Осталось прошить нашу Arduino.

Прошивка ATmega328

У микроконтроллера нет собственного USB-порта. К компьютеру его можно подключить одним из двух способов:

Рассмотрим их подробнее.

Прошивка ATmega328 через USB-UART преобразователь

Для сборки программатора нам понадобится:

Соберите следующую схему

Аппаратная часть готова. Теперь скачайте и установите на компьютер интегрированную среду разработки Arduino IDE и прошейте свой контроллер.

Прошивка ATmega328 через Arduino Uno

Для сборки программатора нам понадобится:

Аппаратная часть готова. Теперь скачайте и установите на компьютер интегрированную среду разработки Arduino IDE и прошейте свою плату.

Источник

Arduino Uno: распиновка, схема подключения и программирование

Arduino Uno — флагманская платформа для разработки на языке программирования С++.

Uno выполнена на микроконтроллере ATmega328P с тактовой частотой 16 МГц. На плате предусмотрены 20 портов входа-выхода для подключения внешних устройств, например плат расширения или датчиков.

Видеообзор

Подключение и настройка

Шаг 1

Подключите плату к компьютеру по USB. Для коммуникации используйте кабель USB (A — B).

Шаг 2

Установите и настройте интегрированную среду разработки Arduino IDE.

Что-то пошло не так?

Пример работы

В качестве примера повторим первый эксперимент «Маячок» из набора Матрёшка. На плате уже есть встроенный пользовательский светодиод L , подключенный к 13 пину микроконтроллера.

После загрузки программы встроенный светодиод L начнёт мигать раз в секунду.

Это значит, всё получилось, и можно смело переходить к другим экспериментам на Ардуино.

Элементы платы

Микроконтроллер ATmega328P

Сердцем платформы Arduino Uno является 8-битный микроконтроллер фирмы Microchip — ATmega328P на архитектуре AVR с тактовой частотой 16 МГц. Контроллер обладает тремя видами памяти:

Микроконтроллер ATmega16U2

Микроконтроллер ATmega328P не содержит USB интерфейса, поэтому для прошивки и коммуникации с ПК на плате присутствует дополнительный микроконтроллер ATmega16U2 с прошивкой USB-UART преобразователя. При подключении к ПК Arduino Uno определяется как виртуальный COM-порт.

Микроконтроллер ATmega328P общается с ПК через сопроцессор ATmega16U2 по интерфейсу UART используя сигналы RX и TX , которые параллельно выведены на контакты 0 и 1 платы Uno. Во время прошивки и отладки программы, не используйте эти пины в своём проекте.

Светодиодная индикация

Имя светодиода Назначение
ON Индикатор питания платформы.
L Пользовательский светодиод на 13 пине микроконтроллера. Используйте определение LED_BUILTIN для работы со светодиодом. При задании значения высокого уровня светодиод включается, при низком – выключается.
RX и TX Мигают при прошивке и обмене данными между Uno и компьютером. А также при использовании пинов 0 и 1 .

Порт USB Type-B

Разъём USB Type-B предназначен для прошивки и питания платформы Arduino. Для подключения к ПК понадобится кабель USB (A — B).

Разъём питания DC

Коннектор DC Barrel Jack для подключения внешнего источника напряжения в диапазоне от 7 до 12 вольт.

Понижающий регулятор 5V

Понижающий линейный преобразователь NCP1117ST50T3G обеспечивает питание микроконтроллера и другой логики платы при подключении питания через разъём питания DC или пин Vin. Диапазон входного напряжения от 7 до 12 вольт. Выходное напряжение 5 В с максимальным выходным током 1 А.

Понижающий регулятор 3V3

Понижающий линейный преобразователь LP2985-33DBVR обеспечивает напряжение на пине 3V3 . Регулятор принимает входное напряжение от линии 5 вольт и выдаёт напряжение 3,3 В с максимальным выходным током 150 мА.

Кнопка сброса

Кнопка предназначена для ручного сброса прошивки — аналог кнопки RESET обычного компьютера.

ICSP-разъём ATmega328P

ICSP-разъём выполняет две полезные функции:

ICSP-разъём ATmega16U2

ICSP-разъём предназначен для программирования микроконтроллера ATmega16U2. А подробности распиновки читайте в соответствующем разделе.

Источник

Как сделать свою собственную плату Arduino Uno

В уроке мы покажем вам, как сделать свою собственную плату Arduino Uno своими руками, используя микроконтроллер ATmega328p IC. В итоге вы сможете понимать как в дальнейшем делать аналоги любых плат, плюс создавать свои. Может быть вы даже откроете свою компанию по производству плат и микроконтроллеров.

Так как Ардуино является платформой с открытым исходным кодом, довольно легко узнать о внутренностях и деталях всего того, что делает Arduino тем, чем она является. Таким образом, в этом уроке мы рассмотрим схему Arduino Uno, немного изменим ее в соответствии с нашими потребностями, изготовим под нее печатную плату и припаяем необходимые компоненты для создания финального продукта.

Мы не будем использовать какие-либо SMD-компоненты для создания своей версии Arduino Uno, потому что не у всех есть паяльная станция, а иногда найти SMD-компоненты очень сложно. Кроме того, наш метод в большинстве случаев дешевле, чем компоненты SMD. Для тех кто, только начинает разбираться в электронике — технологию поверхностного монтажа печатных плат также называют ТМП (технология монтажа на поверхность), SMT (англ. surface mount technology) и SMD-технология (от англ. surface mounted device — прибор, монтируемый на поверхность), а компоненты для поверхностного монтажа также называют «чип-компонентами».

Шаг 1. Изменения в оригинальной версии

Прежде всего давайте поговорим об изменениях, которые собираемся внести в оригинальную схему Arduino Uno, которую вы можете увидеть выше или скачать ниже.

Изменения будут следующими:

  • Мы не будем использовать какие-либо компоненты SMD. Все элементы будут в формате сквозных отверстий.
  • Мы не нашли ни одного чипа FTDI в формате сквозного отверстия, поэтому преобразование USB в TTL не будет выполняться. Для программирования нового Arduino будет использоваться отдельная отладочная плата FTDI.
  • Оригинальный Arduino использует компаратор Mosfet, чтобы определить, подключаем ли мы плату с помощью источника питания USB или постоянного тока. Но в нашей версии мы будем вручную переключать это с помощью перемычки.
  • Традиционно используется микросхема LP2985 от Texas Instruments, чтобы получить источник питания 3,3 В на борту. Но из-за недоступности платы в формате TH мы будем использовать простой линейный регулятор. Таким образом, LM1117 должен быть очевидным выбором, но чтобы сохранить стоимость изготовления еще ниже, мы будем использовать LM317 с R1 и R2 как 240E и 390E соответственно.
  • Последнее, что нужно на плате, — это достаточное количество линий питания и два разъема для каждого порта IO ввода-вывода. Поэтому мы будем размещать ряд разъемов папа и мама вокруг платы, что поможет подключить большее количество устройств непосредственно к Arduino.

Учитывая все изменения, мы можем записать окончательный список компонентов.

Шаг 2. Необходимые компоненты

Компоненты, которые вам нужны для этого проекта. Везде, где количество не указано, считайте его единственным.

  • Микроконтроллер Atmel Atmega328p-pu
  • 28-контактная база IC
  • 16 МГц кварцевый генератор
  • конденсатор 22 пФ — 2 шт.
  • конденсатор 100 нФ — 4 шт.
  • Электролитический конденсатор 100 мкФ — 3 шт.
  • 3 мм красный светодиод — 2 шт.
  • 330E 1/4W резистор — 2 шт.
  • 240E 1/4W резистор — 1 шт.
  • 390E 1/4W резистор — 1 шт.
  • 10K 1/4W резистор — 1 шт.
  • Кнопка для сброса
  • Диод общего назначения 1N4007
  • Линейный регулятор напряжения 7805
  • Линейный регулятор переменного напряжения LM317
  • DC разъем мама
  • 2-контактный винтовой клеммный блок
  • много разъемов «папа» и «мама»

Кроме всего вышеперечисленного для своей собственной Arduino Uno вам также понадобится паяльное оборудование и некоторые аппаратные средства, чтобы облегчить жизнь.

Вам также понадобится программатор USBASP ICSP или конвертер USB в TTL, такой как FTDI для программирования Arduino с вашего компьютера.

Вот проектная спецификация от компании Easyeda:

Собираем все компоненты и переходим к следующему шагу.

Шаг 3. Рисуем окончательную схему

Чтобы нарисовать окончательную схему, использовали Easyeda, набор инструментов EDA на основе веб-технологий. На этом портале очень просто рисовать большие схемы. Также это онлайн сервис. Таким образом, благодаря удобству использования что-то лучшее найти сложно. Рекомендуем вам использовать в своих проектах. Схема, которая разработана может быть скачена по ссылке ниже, PDF документ:

Шаг 4. Создаем печатную плату

Как только схема завершена, пришло время сделать печатную плату. Мы использовали веб-сайт JLCPCB (ссылка), чтобы сделать печатную плату. Эти ребята являются одними из лучших в производстве печатных плат в последние дни.

После завершения проектирования схемы преобразуйте ее в печатную плату и спроектируйте печатную плату на веб-сайте easyEDA (ссылка). Будьте терпеливы. Ошибка на этом шаге испортит вашу печатную плату. Проверьте несколько раз перед генерацией файла gerber. Вы также можете проверить 3d модель вашей платы здесь. Нажмите на создание файла gerber и оттуда вы можете напрямую заказать эту плату через JLCPCB. Загрузите файлы gerber, выберите правильную спецификацию, ничего не меняйте в этом разделе. Оставьте как есть. Это достаточно хорошие настройки для старта. Разместите заказ. Вы получите его через 1-2 недели.

Шаг 5. Пайка компонентов

После того, как вы получили печатную плату, пришло время припаять компоненты на неё, чтобы сделать конечный продукт. В этом нет ничего сложного. Просто держите распечатку схемы перед собой и начинайте размещать компоненты по одному на печатной плате. Убедитесь, что после завершения этого шага нет короткого замыкания по питанию и заземлению.

Одна вещь, которую стоит пояснить, заключается в том, что значения конденсаторов не обязательно должны быть идеальными. Нечто близкое к тем величинам, что мы обсуждали выше, вполне будет работать. То же самое касается резисторов. Но сохраните значения R1 и R2 LM317.

Одна вещь, которую вы можете найти странной, что у arduino, который мы сделали, есть две кнопки сброса. На самом деле, когда разрабатывали макет, использовали четырехконтактную кнопку для справки. Но во время пайки стало понятно, что у нас её нет. Поэтому мы припаяли 2 двухполюсных переключателя сброса на место. Там нет ничего особенного.

Шаг 6. Запуск загрузчика на микроконтроллере

Если вы используете конвертер USB — TTL для программирования микроконтроллера, тогда загрузчик Arduino должен быть установлен в новый чип atmega328p. Об этом мы сделаем следующий большой урок. После этого процесс загрузки кода будет точно таким же, как и в обычной Arduino.

Если вы используете программатор ICSP, то есть программатор USBASP, тогда этот шаг не нужен. Но процесс загрузки кода немного отличается.

Шаг 7. Программируем Ардуино

Подключите коммутационную плату к Arduino и подключите её к компьютеру. Откройте диспетчер устройств и наблюдайте за com-портом конвертера usb — ttl. В Arduino IDE выберите com-порт и плату правильно. Теперь здесь начинается сложная часть.

Если ваша плата FTDI имеет вывод DTR и она подключена для сброса, просто сохраните программу и загрузите ее в Arduino как обычно. Ошибки не будет. Но если у вас нет пина DTR, как у нас, то, прежде чем нажать кнопку загрузки, удерживайте кнопку сброса на плате, а затем нажмите кнопку загрузки. Удерживайте кнопку до тех пор, пока программа не скомпилируется, когда IDE говорит «загрузка», затем отпустите переключатель сброса. Затем код будет загружен.

Шаг 8. Итоговый результат

Здесь вы можете увидеть, что мы загрузили 3-контактный код в новую arduino, и все работает, как и предполагалось. Используя только 3 контакта, мы контролируем 6 светодиодов с промежутком 200 мс между ними. Мы проверяли другие программы, все они работают без нареканий.

Источник

Читайте также:  Строим летний душ своими руками
Adblock
detector